The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 1 1 1 1 2X+2 1 1 0 X 2 3X+2 0 3X+2 2 3X 3X+2 0 3X 2 3X 0 X+2 2 3X 0 3X+2 2 2X 3X 2X+2 3X+2 0 X+2 2 3X 2X 3X+2 2X+2 X 0 2X 3X+2 X+2 2X+2 X 2X+2 X 2 2 3X 3X 3X+2 2 3X X 3X X 2 2X+2 2X+2 0 3X+2 2 2X+2 3X 0 0 2X 0 0 0 2X 0 2X 0 2X 0 2X 2X 2X 2X 0 0 2X 2X 2X 0 0 0 2X 2X 0 0 2X 2X 0 2X 0 0 0 2X 2X 2X 0 2X 0 2X 0 2X 0 0 0 2X 2X 0 2X 2X 0 2X 2X 0 2X 0 0 0 0 2X 0 0 0 0 0 0 0 0 0 0 2X 0 0 2X 0 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 0 2X 0 0 2X 2X 0 2X 0 0 0 0 2X 2X 2X 2X 2X 2X 0 0 0 2X 0 0 0 0 0 0 2X 0 2X 2X 2X 0 0 2X 2X 2X 2X 0 2X 2X 0 0 2X 2X 0 2X 2X 2X 0 0 0 0 2X 0 2X 0 0 0 2X 0 2X 2X 0 2X 0 2X 2X 0 2X 2X 0 0 2X 0 2X 0 2X 2X 2X 2X 0 0 0 0 0 2X 0 2X 2X 2X 2X 2X 0 2X 0 2X 0 0 0 0 2X 2X 2X 0 0 2X 0 2X 2X 0 2X 2X 2X 2X 0 2X 2X 0 0 2X 2X 0 2X 2X 0 0 0 0 0 0 2X 2X 0 0 0 0 0 2X generates a code of length 58 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 53. Homogenous weight enumerator: w(x)=1x^0+112x^53+9x^54+132x^55+128x^56+276x^57+751x^58+264x^59+124x^60+120x^61+7x^62+116x^63+2x^64+4x^65+1x^66+1x^112 The gray image is a code over GF(2) with n=464, k=11 and d=212. This code was found by Heurico 1.16 in 0.281 seconds.